
Tavernet, J.P., de Klein, C., Simon P. and van der Weerden, T., 2024. Overseer model: farm-specific modelling of nitrous oxide emission 

factors from animal urine and model improvements. In: Opportunities for improved farm and catchment outcomes (Eds. C.L. Christensen, D.J. 
Horne and R. Singh). http://flrc.massey.ac.nz/publications.html. Occasional Report No. 36. Farmed Landscapes Research Centre, Massey 

University, Palmerston North, New Zealand. 10 pages 

 

OVERSEER MODEL: FARM-SPECIFIC MODELLING OF 

NITROUS OXIDE EMISSION FACTORS FROM ANIMAL 

URINE AND MODEL IMPROVEMENT 

 

Jean-Paul Tavernet1, Cecile de Klein2, Priscila Simon2 and Tony van der Weerden2    

 

1Overseer Limited 

Level 4, 2 Woodward Street, Wellington, New Zealand 

Email: jeanpaul@overseer.org.nz 

2Agresearch Ltd 

Invermay Agricultural Centre, Puddle Alley, Private Bag 50034, Mosgiel 9053 

 

 

Abstract 

Nitrous oxide (N2O) – a highly impactful greenhouse gas (GHG) with a significant warming 

effect – is a byproduct released from agricultural practices, especially from animal urine 

deposition on pastures and manure management. Accurate estimates of N2O emission factors 

(EFs) are crucial for assessing the impact of mitigation strategies required for achieving 

environmental sustainability. The main aim of this study was to use New Zealand experimental 

data to develop a farm-specific methodology for estimating N2O EFs from animal urine. 

A predictive algorithm in the Overseer environment for modelling farm-specific EFs of dairy 

cattle urine was developed utilising an N2O database. This database contained EF data produced 

from field experiments conducted under various agricultural environments that spanned a range 

of soil characteristics, climatic conditions, and urine application rates. Through statistical 

analysis, the key parameters that influence N2O EFs were identified and integrated in a 

predictive algorithm for dairy cattle urine. The N2O database did not contain enough data to 

develop separate algorithms for sheep, beef, and deer urine, or for sloped land. Instead, an 

adjustment was made to the predictive algorithm for cattle urine, using the relative difference 

in EFs for different livestock species and slope classes that are used in New Zealand’s national 

agricultural inventory model (AIM). The new algorithms were integrated into the Overseer 

model, therefore allowing estimates of N2O EFs to be farm- and livestock-specific and sensitive 

to slope. 

We also assessed the need to refine the current Overseer approach for estimating N2O emissions 

from manure management systems (MMS) by comparing it with the AIM methodology. Based 

on this, it was recommended that Overseer retain its current framework for characterising 

MMS, but carefully review the associated algorithms and emission factors.  Updates should be 

made when sufficient new data is available. 

Finally, several other changes and improvements were made to the N2O emissions sub-model 

to better align with the AIM model (EF for dung and the inclusion of emissions from roots 

following cultivation), or to make a correction (imported organic fertilisers). 

The refined methods and adjustments to the Overseer N2O model collectively increased the 

precision and confidence in the EFs used by Overseer, and support users to make more informed 
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decisions regarding nutrient management practices and mitigation strategies that influence N2O 

emissions. 

Introduction 

Overseer, a tool for estimating farm-level nutrient budgets and greenhouse gas emissions, 

previously offered a "farm-specific" option for calculating nitrous oxide (N2O) emissions from 

animal urine. This option adjusted N2O emission factors (EFs) based on soil temperature and 

moisture content in the top 10 cm (SM100) of the soil profile. However, concerns arose as this 

method could lead to EFs exceeding values observed in New Zealand field trials. This 

discrepancy was attributed to the assumed relationship between EFs and SM100 (de Klein et 

al., 2017). Consequently, the option was disabled, leaving Overseer reliant on the national 

average EF value (1%) from New Zealand's Agricultural Inventory Model (AIM; MPI, 2022), 

potentially compromising accuracy at the farm-scale. 

Recent studies (e.g., van der Weerden et al. 2019) highlighted the influence of specific soil 

properties (water content, density, clay content, and organic carbon) on N2O emissions from 

dairy cattle urine. Predictive algorithms based on these parameters provide an opportunity to 

develop a farm-specific method for estimating urinary N2O EFs within Overseer. The aim of 

this study was to: 

• Utilise the New Zealand N2O database for dairy cattle urine to develop an 

algorithm for implementation within Overseer that accurately predicts block-

specific EFs. 

• Build upon the developed algorithm for dairy cattle urine and explore its 

applicability to other animal enterprises and sloping land, enabling farm-specific 

or block-specific N2O EF estimation for other livestock types and topographies. 

 

While N2O emissions are highly sensitive to SM100, the SM100 values directly available in 

Overseer have limitations, including an inability to exceed field capacity, compromising their 

effectiveness in N2O estimations. This study offers an alternative approach. Instead of relying 

on directly available SM100 values, the new algorithm will base its estimations on readily 

available input parameters known to influence SM100, such as rainfall, temperature, and 

specific soil properties.   

The development of an algorithm for estimating farm-specific N2O emission factors for animal 

urine in Overseer is fully reported in Simon et al. (2021). Here we provide a summary of this 

study and describe the impact of the improved methodology for urinary N2O EFs on the 

Overseer N2O estimates. 

Method 

Data sourcing 

The data collection carried out by Simon et al. (2021) involved two key steps: 

• Field trial data collection (N2O database): identified suitable N2O EF measurements 

from dairy cattle urine in field trials across New Zealand (including that in de Klein et 

al, 2003, 2004, 2014a,b; Hoogendoorn et al., 2013; Luo et al., 2008, 2010, 2013, 2019; 

Ledgard et al., 2014; Sherlock et al., 2003a,b; Sprosen et al., 2016; Simon et al., 2019; 

van der Weerden and Rutherford., 2015; van der Weerden et al., 2011). These trials 

covered flat land and low-slope hill land and included a diverse range of soil types. 
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• Overseer data: linked the measured EFs with corresponding soil and climate variables 

available within the Overseer database: 

o Soil data: by using trial site coordinates, the appropriate S-map soil types to each 

site were assigned to each measurement. 

o Climate data: the site-specific climate data for the exact period of each field trial 

was obtained. This involved identifying the closest virtual climate station near 

each trial site, requesting data for the last 20 years from NIWA, and extracting 

the relevant climate data for the specific trial period. 

This approach resulted in a dataset of 68 EF measurements of N2O and their associated soil and 

climate variables from 31 sites across New Zealand, representing a significant portion of the 

diversity of the country's agricultural land. The field sites were on soils belonging to soil orders 

representing 82% of New Zealand's agricultural land: allophanic, brown, gley, pallic and recent 

soils. 

Data analysis 

The dataset was analysed to determine the main drivers of N2O emissions and to develop a best-

fit model describing the EFs of N2O in dairy cattle urine. Statistical analyses were conducted 

using mean EF values per site, as soil and climatic variables were only available per site, not 

for each replicate measurement. The data distribution was skewed, requiring a natural log-

transformation for variance stabilisation. A linear modelling approach was then used to derive 

a predictive algorithm based on variables explaining the variability in N2O emission factors.  

Initially, ‘soil type’ was included as a random effect in the linear predictive algorithm but was 

later discarded as it only accounted for a very small amount of the variance. Subsequent 

investigation focused on fixed effects only. 

Key results 

Selected variables 

The analysis aimed at identifying variables that best explain the variability in measured N2O 

emission factor values is detailed in Simon et al. (2021). Linear algorithms combining 36 

variables, describing different soil and climatic characteristics, were explored. Given the 

interdependent nature of several variables, the objective was to identify the most impactful 

variable within each group of characteristics. Three single variables – cumulative rainfall in the 

30 days (Rain0-30) following the trial start, profile available water (PAW) in the top 30 cm, and 

soil clay content (Clay) of the top 30 cm – were found to best explain the variability. 

Simon et al. (2021) further investigated the interaction between Rain0-30 and PAW, as these 

factors influence each other. The ratio (PAW/Rain0-30) was created to reflect this collinearity, 

with higher values of this ratio indicating better soil moisture conditions (low rainfall, high 

available water). Additionally, a significant effect of land use (flat land vs. low-slope hill land) 

was observed, with flat land having generally higher emission factors (van der Weerden et al., 

2020). This binary variable (flat land vs. low-slope hill land) was retained, leading to the 

development of separate algorithms for each land type. 

Different linear algorithms with 2, 3, or 4 variables were tested. Algorithms were evaluated not 

only based on their goodness-of-fit, but also on the scientific logic of the relationships. 

Algorithms with good fit but inconsistent with scientific evidence were rejected, ensuring that 

both statistical and scientific validity were assessed in the selection. 
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Algorithms 

Dairy cattle methodology 

The optimal linear model produced two equations tailored to topography and land use: one for 

flat land, based on 48 observations, and one for low slope areas (<12°), based on 20 

observations. Although the coefficients of the variables in the two algorithms showed no 

significant difference, the constant term varied significantly, indicating distinct but parallel 

relationships: 

For flat land:  

𝐿𝑜𝑔(𝑁2𝑂 𝐸𝐹𝑢𝑟𝑖𝑛𝑒,𝑑𝑎𝑖𝑟𝑦,𝑓𝑙𝑎𝑡) =  −1.24484 ∗
𝑃𝐴𝑊

𝑅𝑎𝑖𝑛0−30
+ 0.08076 ∗ 𝐶𝑙𝑎𝑦 − 1.96674 

For hill land - low slope: 

𝐿𝑜𝑔(𝑁2𝑂 𝐸𝐹𝑢𝑟𝑖𝑛𝑒,𝑑𝑎𝑖𝑟𝑦,ℎ𝑖𝑙𝑙) =  −1.24484 ∗
𝑃𝐴𝑊

𝑅𝑎𝑖𝑛0−30
+ 0.08076 ∗ 𝐶𝑙𝑎𝑦 − 2.95716 

It's worth noting that using a back-transformed mean as an estimate of the mean on the original 

scale introduces bias (Rothery, 1988). This bias in back-transformed means was corrected by 

using the variance of transformed residuals (σ2) (Neyman and Scott, 1960). 

𝐸𝐹𝑢𝑟𝑖𝑛𝑒,𝑑𝑎𝑖𝑟𝑦(%) = 𝑒𝑥𝑝 (𝐿𝑜𝑔(𝑁2𝑂 𝐸𝐹𝑢𝑟𝑖𝑛𝑒,𝑑𝑎𝑖𝑟𝑦)) ∗ exp (
0.9489363

2
) 

Figure 1 presents a comparison between modelled and measured values using the best algorithm 

derived from available data, demonstrating a level of agreement considered “reasonable”. 

 

Figure 1: Comparison of modelled and measured EF values using the proposed algorithm. The 

shaded area represents the 95% confidence interval for the mean of each model. 

Sensitivity tests detailed in Simon et al. (2021) were conducted with the aim of evaluating the 

EF values for N2O from urine and comparing them to the expected ranges. In total, 13 different 

soil and climate combinations, spread over five regions, were selected, and the respective soil 

classifications and climate information were collected. In general, the EF values matched 
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expectations well, apart from one soil type with high clay content that exceeded the upper limit 

used in the algorithm development. As a result, lower (15%) and upper limits (32.5%) were 

imposed on the clay content in the algorithm, based on the values from the original dataset. 

Statistical analysis of the algorithm's performance will be refined as additional testing is 

performed and new measured N₂O EF values become available. 

Animals and hill country methodology 

Although separate algorithms have been developed for flat land and hill land-low slopes with 

similar offsets, the flat land algorithm is considered more robust and can be applied with greater 

confidence as it is based on a greater number of observations. Therefore, the flat land algorithm 

is used for dairy cattle urine deposited on land blocks with slopes less than 15 degrees.  

For slopes greater than 15 degrees, the hill country approach of the AIM model was employed. 

In the AIM approach, N2O emissions from sheep and cattle urine are estimated for different 

slope classes. Adopting this approach in the Overseer model results in an estimate of the EF in 

each block of land. Therefore, the EF for animal urine deposited on different slope classes is 

estimated as follows: 

𝐸𝐹𝑢𝑟𝑖𝑛𝑒,𝑎𝑛𝑖𝑚𝑎𝑙,𝑠𝑙𝑜𝑝𝑒  (%) =  𝐸𝐹𝑢𝑟𝑖𝑛𝑒,𝑑𝑎𝑖𝑟𝑦,𝑓𝑙𝑎𝑡 ∗ 𝑅𝑎𝑛𝑖𝑚𝑎𝑙,𝑠𝑙𝑜𝑝𝑒  

Where 𝑅𝑎𝑛𝑖𝑚𝑎𝑙,𝑠𝑙𝑜𝑝𝑒  is adjusted based on the ratio of EF values used in AIM for other animals 

and slopes, and slope is the slope of the land block where urine is deposited. Since land blocks 

are defined based on common physical and management characteristics, slope is a consistent 

attribute within each block in Overseer. Table 1 presents the values of 𝑅𝑎𝑛𝑖𝑚𝑎𝑙,𝑠𝑙𝑜𝑝𝑒 for various 

animal species and slope block classifications. These values are based on analyses provided in 

van der Weerden et al. (2020) and additional research presented in van der Weerden et al. 

(2019). 

 

Animals and slope class 𝑅𝑎𝑛𝑖𝑚𝑎𝑙,𝑠𝑙𝑜𝑝𝑒 

Dairy cattle - Slopes < 15o 1.00 

- Slopes ≥ 15o 0.69 

Beef cattle - Slopes < 15o 0.90 

- Slopes ≥ 15o 0.32 

Sheep cattle - Slopes < 15o 0.48 

- Slopes ≥ 15o 0.077 

Deer cattle - Slopes < 15o 0.71 

- Slopes ≥ 15o 0.19 

Table 1: Ratio for scaling EF algorithm for dairy urine on flat land, to estimate block-specific 

emission factors for hill country beef, deer and sheep on low and medium/steep topography, 

based on values used in the AIM model that are published in van der Weerden et al. (2020) and 

additional analysis provided in van der Weerden et al. (2019). 

Flat land/low slope class definitions differ between the N₂O database (and AIM) and Overseer. 

The N₂O database uses a limit of 12° and Overseer uses a limit of 15° for the flat land/low slope 

classes class. Given that the analyses are based on data collected for average slopes greater than 

15°, the 𝑅𝑎𝑛𝑖𝑚𝑎𝑙,𝑠𝑙𝑜𝑝𝑒 values remain applicable to the ≥ 15° definition used by Overseer for this 

class. 
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Impact on Overseer analyses 

The implementation of the new methodology to estimate 𝐸𝐹𝑢𝑟𝑖𝑛𝑒,𝑎𝑛𝑖𝑚𝑎𝑙,𝑠𝑙𝑜𝑝𝑒 at the block (or 

sub-block) level within Overseer influences the estimation of total N2O emissions at the farm- 

level. A comprehensive analysis of the Overseer database was conducted to assess this impact. 

This involved running the most recent analyses of each of the 11,000 farms available in the 

database (one analysis per farm, or 11,000 analyses), providing an understanding of the 

potential consequences of this new methodology. 

The average farm-level 𝐸𝐹𝑢𝑟𝑖𝑛𝑒,𝑎𝑛𝑖𝑚𝑎𝑙,𝑓𝑙𝑎𝑡 for the flat land is calculated for all farms defined in 

the Overseer database. EFs are visualized in Figure 2 using boxplots for the different farm types 

defined in Overseer. The average 𝐸𝐹𝑢𝑟𝑖𝑛𝑒,𝑑𝑎𝑖𝑟𝑦,𝑓𝑙𝑎𝑡 of dairy farms located on flat land is close 

to 1%, which corresponds to the previously well-established national average for flat land. This 

consistency suggests that the new EF estimation algorithm is consistent with existing 

knowledge. However, significant variability is observed around this average, highlighting the 

diversity of agricultural landscapes across New Zealand. Factors such as different soil types 

(affecting PAW and clay content) and climates (affecting Rain0-30)  contribute to this 

distribution of EF values. 

 
Figure 2: Boxplots of farm average emission factors for urine deposited on flat land (slopes < 

15o) across Overseer farm types. These types include “dairy cattle” (dairy cattle only), “mixed” 

(dairy and non-dairy cattle), “non-dairy” (non-dairy animals only), and “crops” (external 

animals grazing on crops). 

 

Likewise, 𝐸𝐹𝑢𝑟𝑖𝑛𝑒,𝑎𝑛𝑖𝑚𝑎𝑙,𝑓𝑙𝑎𝑡 for all farm types exhibit significant variability (Figure 2), likely 

also due to block-specific factors such as soil diversity and climatic variations. Comparing 

farm-level N2O emissions from urinary deposition estimated using the new methodology with 

those obtained using the original static emission factor of 1%, reveals this variability (Figure 

3). This reflects the diversity of agricultural soils and climate, suggesting that the new 

methodology more accurately describes N2O emissions from urine. 
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Figure 3: Comparison of farm-level N2O emissions from urinary soil deposition: new 

methodology (after update) versus old 1% emission factor (before update) estimation. 

Other changes in the N2O sub-model 

In addition to the introduction of the new methodology for estimating N2O emissions from 

urinary soil deposition, several other changes and improvements have been made to the N2O 

emissions sub-model. The EF for dung deposited on soil has been adjusted from 0.0025 to 

0.0012 to align with the AIM model. In addition, the calculation of N2O emissions from 

imported organic fertilisers has been corrected and N2O emissions from roots in the case of 

ploughing (cultivation/end-of-crop) are now included.  

The need to refine the Overseer approach to estimating GHG emissions from manure 

management systems (MMS) was assessed by de Klein et al. (2021). The authors compared the 

current Overseer framework for describing MMS with a proposed update of the AIM 

framework. Based on the findings, it was recommended that Overseer retains its current 

framework for characterising MMS, but carefully reviews the associated algorithms and 

emission factors to ensure these are scientifically robust. Revisions will be made once sufficient 

research data becomes available. 

 

Total impact of all improvements 

Figure 4 illustrates the combined impact of all the changes, with an overall reduction in N2O 

emissions of 8% on average. A 30% standard deviation is observed, mainly attributable to the 

consideration of farm- or block-specific soil characteristics and climatic conditions in the 

calculation of 𝐸𝐹𝑢𝑟𝑖𝑛𝑒,𝑎𝑛𝑖𝑚𝑎𝑙,𝑠𝑙𝑜𝑝𝑒. 
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Figure 4: Comparison of total farm-level N2O emissions: new methodology (after update) 

versus old 1% emission factor (before update) estimation. Inset: histogram of the variation 

defined by the ratio of (New Total N₂O Emission - Old Total N₂O Emission) / Old Total N₂O 

Emission.   

Conclusions 

This study presents significant advancements in refining nitrous oxide (N₂O) emission 

estimations within the Overseer model, a tool for farm-level nutrient budgeting and greenhouse 

gas (GHG) assessment. We developed a novel method for estimating urinary N₂O emission 

factors (EFs) within Overseer. The method leverages a comprehensive New Zealand N₂O 

database to create algorithms to estimate EFs.  

Statistical analyses identified key drivers of N₂O emissions from dairy cattle urine, informing 

the development of algorithms which incorporate soil and climatic characteristics at the block-

level. Results indicated that variables such as cumulative rainfall, profile available water, and 

soil clay content significantly influenced N2O EFs. The algorithms developed for dairy urine 

on flat land demonstrated good agreement with measured values; sensitivity tests validate their 

performance within expected ranges. 

Furthermore, for different animal types and slope classes, adjustments were made based on EF 

values used in AIM. These adjustments accounted for discrepancies in slope class definitions 

between the N₂O database and Overseer. Adjustments were also made to EF for dung ensuring 

consistency with the AIM model, and to the emissions calculations from imported organic 

fertilisers and crop root residues. 

The combined impact of these changes resulted in an overall decrease in estimated N₂O 

emissions at farm-level by 8%, with variations attributable to block-specific soil and climate 

characteristics (Figure 4). 
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This study's findings represent a significant step forward in improving the precision and 

reliability of N2O EF estimations within Overseer. By incorporating the diversity of agricultural 

landscapes in Aotearoa New Zealand, the new methodology offers a more realistic N2O 

emission estimate from deposited urine. Ongoing and future research will further refine the 

model as additional data become available. 
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